Skip to content

Latest commit

 

History

History

0622-Design Circular Queue

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

622. Design Circular Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Your implementation should support following operations:

  • MyCircularQueue(k): Constructor, set the size of the queue to be k.
  • Front: Get the front item from the queue. If the queue is empty, return -1.
  • Rear: Get the last item from the queue. If the queue is empty, return -1.
  • enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
  • deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
  • isEmpty(): Checks whether the circular queue is empty or not.
  • isFull(): Checks whether the circular queue is full or not.

Example:

MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3 circularQueue.enQueue(1); // return true circularQueue.enQueue(2); // return true circularQueue.enQueue(3); // return true circularQueue.enQueue(4); // return false, the queue is full circularQueue.Rear(); // return 3 circularQueue.isFull(); // return true circularQueue.deQueue(); // return true circularQueue.enQueue(4); // return true circularQueue.Rear(); // return 4 

Note:

  • All values will be in the range of [0, 1000].
  • The number of operations will be in the range of [1, 1000].
  • Please do not use the built-in Queue library.

Solutions (Rust)

1. Solution

structMyCircularQueue{data:Vec<i32>,size:usize,len:usize,head:usize,}/** * `&self` means the method takes an immutable reference. * If you need a mutable reference, change it to `&mut self` instead. */implMyCircularQueue{/** Initialize your data structure here. Set the size of the queue to be k. */fnnew(k:i32) -> Self{let k = k asusize;Self{data:vec![0; k],size: k,len:0,head:0,}}/** Insert an element into the circular queue. Return true if the operation is successful. */fnen_queue(&mutself,value:i32) -> bool{ifself.is_full(){false}else{self.data[(self.head + self.len) % self.size] = value;self.len += 1;true}}/** Delete an element from the circular queue. Return true if the operation is successful. */fnde_queue(&mutself) -> bool{ifself.is_empty(){false}else{self.head += 1;self.head %= self.size;self.len -= 1;true}}/** Get the front item from the queue. */fnfront(&self) -> i32{ifself.is_empty(){ -1}else{self.data[self.head]}}/** Get the last item from the queue. */fnrear(&self) -> i32{ifself.is_empty(){ -1}else{self.data[(self.head + self.len - 1) % self.size]}}/** Checks whether the circular queue is empty or not. */fnis_empty(&self) -> bool{self.len == 0}/** Checks whether the circular queue is full or not. */fnis_full(&self) -> bool{self.len == self.size}}/** * Your MyCircularQueue object will be instantiated and called as such: * let obj = MyCircularQueue::new(k); * let ret_1: bool = obj.en_queue(value); * let ret_2: bool = obj.de_queue(); * let ret_3: i32 = obj.front(); * let ret_4: i32 = obj.rear(); * let ret_5: bool = obj.is_empty(); * let ret_6: bool = obj.is_full(); */
close